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A B S T R A C T

Multi-temporal analysis has been widely acknowledged as a promising method to derive soil moisture from radar
backscatter observations. The method assumes that only soil moisture varies in the period of interest, while all
other parameters such as vegetation water content and soil surface roughness are sufficiently time invariant.
However, this assumption is not easy to satisfy in agricultural areas where cultivation practices such as
ploughing and irrigation are irregularly conducted between radar acquisitions. The paper has proposed an
unsupervised change detection method to serve as a pre-processing procedure for multi-temporal retrieval.
Briefly, the temporal ratio of HV and the temporal difference of HV/VV and VV polarizations were selected as the
optimal feature space, using a genetic algorithm based feature selection algorithm and an extensive synthetic
data set. The change map is determined from a two-step procedure with the first step producing multiple over-
detected change maps for the period of interest using the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) method. The second step merges the multiple change maps to remove the false alarms with a
principle similar to the ensemble machine learning. Evaluation on a synthetic data set demonstrated that the
proposed method can largely remove the error in multi-temporal soil moisture retrieval that is caused by abrupt
roughness and vegetation changes. Evaluation on real radar data sets, including airborne L-band radar, RAD-
ARSAT-2 at C-band and COSMO SkyMed at X-band, demonstrated an accurate identification (> 0.9) while
yielding a low false-alarm rate (< 0.1). These results suggest that the method may be used as a pre-processing
stage of global soil moisture retrieval from radar satellite missions with a high revisit frequency, such as Sentinel-
1 and SAOCOM-1.

1. Introduction

Synthetic Aperture Radar (SAR) has been demonstrated as a pro-
mising way to retrieve surface soil moisture from satellite at a spatial
resolution of better than 100 m, due to its all-weather capability and the
high sensitivity of backscatter to surface soil moisture (Ulaby et al.,
2014). However, soil moisture retrieval from SAR data still faces some
key problems, with the main challenge being the large number of sur-
face parameters affecting the radar backscatter (in particular surface
roughness and vegetation structure).

A great number of soil moisture retrieval algorithms have been
proposed over the last four decades, across three main categories, i.e.
empirical methods, inversion of scattering models and multi-temporal
analysis (Kornelsen and Coulibaly, 2013). Among these, multi-temporal
analysis has been acknowledged as the most promising method, be-
cause of its simplicity in decoupling the effect of soil moisture on radar
backscatter from that of other surface parameters (Balenzano et al.,

2011). Soil roughness and vegetation parameters undergo relatively
smooth evolution in time compared to soil moisture, with the exception
being the area with cultivation practices, and thus can be assumed
constant for acquisitions with a sufficiently short time interval. The
utilization of this assumption in soil moisture retrieval starts from
Wagner et al. (1999a, 1999b), which relates the backscatter of each
pixel to that of wettest and driest soil moisture conditions using image
ratios or differences of backscatter observations at different times. Re-
cently, several algorithms that invert temporal backscatter difference/
ratio for soil moisture retrievals have been proposed for operational soil
moisture mapping using Sentinel-1 and/or Soil Moisture Active and
Passive (SMAP) time series (Balenzano et al., 2011; Balenzano et al.,
2013; Ouellette et al., 2017).

Multi-temporal SAR data can also circumvent the problem of ill-
posed inversion of scattering models by introducing more observations.
A number of studies have directly estimated time-series soil moisture,
together with a constant root mean square (RMS) height (s) and/or
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correlation length (l), through inversion of scattering models from time-
series backscatter measurements (Kim et al., 2012; Kweon and Oh,
2014; Mattia et al., 2009; Notarnicola, 2014; Pierdicca et al., 2010).
Others have combined multi-angular time-series data to first determine
surface roughness parameters and then retrieved soil moisture from the
successive observations (Rahman et al., 2008; Sahebi and Angles, 2010;
van der Velde et al., 2012; Wang et al., 2011).

Despite the great potential of using multi-temporal SAR imagery,
the assumption that the variation of backscatter in time only relates to
changes of soil moisture may not be valid, even for two successive
images from the Sentinel-1 constellation (6 days). A heavy rainfall be-
tween two observations can cause impulse smoothening of the soil
roughness (Zobeck and Onstad, 1987) and significant change of the
vegetation's dielectric constant (McDonald et al., 2002). Fortunately,
the presence/absence of a rainfall event is relatively easy to be de-
termined, because a rainfall event can result in an abrupt increase of
average backscatter over time. However, backscatter variations can also
occur at the paddock scale due to cultivation activities, e.g. irrigation,
harvesting, ploughing and harrowing. One soil moisture retrieval ap-
proach that considers the paddock scale roughness changes includes the
Bayesian change detection method (Notarnicola, 2014). A more favor-
able approach is to include a pre-processing procedure that can de-
termine the changed paddocks, making detection independent of the
aforementioned multi-temporal approaches. With knowledge of
changed paddocks, time series SAR data of change paddocks can then
be split into different subseries according to the paddock specific
changed dates, where multi-temporal retrieval methods can be used
safely.

A great number of methods have been proposed for detecting earth
surface changes using multi-temporal SAR data, with the main interest
focusing on change of landcover types (e.g., Marin et al., 2015; Pantze
et al., 2014), flooded area (e.g., Brisco et al., 2013), ship movements
(e.g., Wei et al., 2014) and oil spills (e.g., Konik and Bradtke, 2016).
There are two main steps in change detection (Bruzzone and Prieto,
2002): one is the generation and selection of features (e.g. the differ-
ence/ratio maps) at a pixel and/or object basis; the other analyzes the
differences between images and identifies the changes. The former is
tightly related to specific changes because of their different scattering
mechanisms. For the latter, popular methods include an automatic
Bayesian algorithm (Bruzzone and Prieto, 2002), a Kittler-Illingworth
based method (Satalino et al., 2014), and a method based on enhanced
fuzzy clustering (Gong et al., 2012). Despite the promising performance
of these methods in specific applications, two issues need to be further
addressed: i) Can slight changes in roughness and vegetation be iden-
tified? and ii) What are the optimal polarizations and spatial scale
combination in identifying these changes?

The study has developed an anomaly detection method as a pre-
processing step for the safe use of multi-temporal approaches. The
spatial/temporal characteristics of roughness and vegetation changes in
SAR data were first investigated to guide the development of the
method. The proposed method includes two main components: i) ex-
traction of the optimal image ratio/difference for change detection at
the paddock scale with the aid of a feature selection algorithm, and ii) a
two-step algorithm to identify the changed paddocks, with the first step
generating multiple over-detection for the same period of interest using
different SAR image pairs, which are then combined to remove the false

Fig. 1. Focus area selected for algorithm evaluation using ground measurements with the changed paddocks outlined and numbered. The right panel shows two
examples where roughness changed during the period of SMAPEx-5.
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alarms in the second step. The proposed pre-processing method was
evaluated using extensive synthetic and real SAR data sets. The multi-
temporal soil moisture retrieval method proposed by Wagner et al.
(1999a, 1999b) was then used to show the initial and residual errors
caused by abrupt roughness and vegetation changes before and after
application of the proposed method.

2. SMAPEx-5 dataset

2.1. Ground measurements

The Fifth Soil Moisture Active Passive Experiment (SMAPEx-5) was
an airborne field campaign that contributed to the calibration and va-
lidation of NASA's Soil Moisture Active Passive (SMAP) mission (Ye
et al., submitted). This campaign was carried out in the Australian
Spring (7th–27th September 2015) in the Yanco agricultural area of
south-eastern Australia, with the focus area selected for this study
shown in Fig. 1. The main land cover types for the focus area included
dense winter wheat, grass and bare soil, with part of the area under-
going intensive cultivation practices during the later stage of the
SMAPEx-5 period. All paddocks with cultivation activities in the focus
area were recorded for ground truth, including 8 irrigated wheat pad-
docks and 13 bare soil or grass paddocks. These paddocks account for a
small part of the focus area, with their boundary and paddock ID de-
picted in Fig. 1.

Extensive ground sampling of near-surface (0–5 cm) soil moisture
(mv) was carried out on eight days during SMAPEx-5 (September 9th,
11th, 14th, 17th, 19th, 22nd, 24th and 27th). Measurements were made
using portable soil moisture sensors on a regular grid with a spacing of
250 m. Three point-based soil moisture measurements were made
within a 1 m radius at each sampling location and averaged to account
for small-scale soil moisture variability. A moderate rainfall of ~18 mm
occurred before the experiment resulting in high mv values of
~0.40 m3/m3 at the start followed by a three-week dry down period.
The gradually changing rate can be roughly expressed as 1 − e(−I/2)

with the I being the order of sampling dates from 1 to 8 according to the
ground sampling data (Ye et al., submitted).

Roughness was measured along 3 m segments using a pin profiler
with pins at 0.5 cm spacing. Measurements were made in two ortho-
gonal directions (along and across rows or north-south and east-west in
the case of no row structure), and at two to three locations within each
paddock, to characterize spatial variability in surface roughness. In
general, the root mean square height (s) and correlation length (cl)
ranged from 0.5 to 3 cm and 5 to 35 cm for isotropic surface respec-
tively. However, s values in paddocks with row structures up to 9 cm
were observed across the row.

Intensive vegetation sampling, including plant height, stem and leaf
geometry, and vegetation water content (VWC), was carried out be-
tween the soil moisture sampling days. The available measurements for
paddocks with cultivation activities during the experiment are listed in
Table 1. Unfortunately, most of the cultivation events occurred between
the last two soil moisture sampling dates (DOY 267 and 269). Conse-
quently, the occurrence of these events was recorded on the last soil
moisture sampling date (DOY 269) without any detailed measurements
of the roughness and vegetation changes.

2.2. SAR data set

Time series of SAR data at three different microwave frequencies,
i.e., L-band (1.26 GHz), C-band (5.4 GHz) and X-band (9.3 GHz), were
used in this study. A summary (acquisition dates, pass direction, fre-
quency and polarization) of these data sets is provided in Fig. 2. The L-
band data set was acquired during SMAPEx-5 using the airborne Po-
larimetric L-band Imaging SAR (PLIS) with incidence angles ranging
from 15° to 50° across an ~2 km swath. The spacing of PLIS single look
complex (SLC) data is 2 m in azimuth and 3.75 m in slant range (for

details of the PLIS system and its calibration refer to Zhu et al., 2018b).
Three RADARSAT-2 wide-swath standard quad-polarization SLC pro-
ducts and four standard dual polarization SLC products were available
during SMAPEx-5 with a slant range spacing of 8 or 11.8 m and an
azimuth spacing of 5.1 m. The incidence angle of these images varied
between 22° and 40°. The X-band data set consists of two interfero-
metric subsets of the COSMO-SkyMed STRIPMAP HIMAGE acquired
from left and right look directions, respectively. The ground range and
azimuth spacing of these images is 3 m. An optical image acquired by
Landsat 8 Operational Land Imager (OLI) on 30th September 2015 was
used as a reference for geo-registration.

Images from all three sensors were multi-looked and re-sampled to a
grid size of 25 m. The cosine law (Ulaby et al., 1982) with a power
index of 2 was used to normalize the backscattering coefficient (dB) to a
reference angle of 30°. Since this can have a negative effect on change
detection, the proposed method could be applied to data with similar
incidence angle ranges in turn, with the presence/absence of roughness
and vegetation changes being combined using logical operations. Al-
ternatively, as a pre-processing stage of multi-temporal soil moisture
retrieval, the one used in a specific retrieval study/application could
also be the optimal choice.

2.3. Cultivation activities in SAR data

The PLIS time series data over the focus area (the red rectangle in
Fig. 1) and the records of cultivation practices between DOY 267 and
270 in 2015 were used to provide an opportunity to investigate the
spatial and temporal characteristics of anomaly surface changes.
Fig. 3(b), (c) and (d) shows the difference maps of HH, VH and VV
polarized backscatter images acquired on DOY 267 and 270. Ploughing
and irrigation practices were observed over five bare soil paddocks and
eight winter wheat fields in this period, respectively, with these culti-
vation practices being carried out for individual paddocks. Quite dif-
ferent patches are apparent in the difference maps with the boundaries
of these patches roughly matching that of these paddocks. Accordingly,
it is reasonable to treat all pixels describing a single paddock as an
object and applying object-based techniques to detect the changed
paddocks. Object-based techniques take the irregular geographical ob-
jects in the research area (i.e. the paddocks in this study) as the analysis
unit rather than the uniform pixel/grid, with the first step being image
segmentation to determine the boundaries of geographical objects. For
SMAPEx-5 (Yanco area), the area of paddocks ranged from 0.1 km2 to
0.5 km2, making this the target scale of the study. However, soil
moisture retrieval can still be carried out at a finer scale by simply
taking the detection results as a spatial mask. The use of an object-based
analysis helps to reduce the effect of geo-referencing and speckle noise
(Hussain et al., 2013), thus reducing the uncertainty caused by data
pre-processing.

The time series HH, VH and VV of four bare soil paddocks with soil
practices (i.e., #9–12) and four wheat paddocks with irrigation (i.e.,
#16–19) are also depicted in Fig. 3. Others were not included for
simplicity and because of their similar behavior. In general, the back-
scattering coefficients for all polarizations gradually decreased over the
whole period of DOY 252–270, which is coincident with the decrease of
soil moisture over the SMAPEx-5. A significant increase of HH, VH and
VV can be observed from DOY 267 to 270 over the winter wheat
paddocks due to irrigation. Similar results were found across bare soil
paddocks due to soil cultivation activities. However, these changes
were generated by different mechanisms. The relationship between ir-
rigation and surface changes is quite complex. Despite a significant
increase of soil moisture, irrigation can decrease soil roughness over a
short time (Hunsaker et al., 1999). The sudden increase of soil water
can also change the dielectric constant of wheat, with a similar mag-
nitude effect to that of rainfall (McDonald et al., 2002). With respect to
soil cultivation, the soil moisture of the top layer and roughness can be
changed simultaneously. As a result, it can be hard to determine the
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contribution of soil moisture change to the measured backscatter var-
iation. Nevertheless, for detecting these anomalies, it is not critical
what causes the backscatter variation. Since the changed paddocks
commonly takes only a small part of the whole research area, and the
SAR observations of these paddocks deviate a lot in both space and time
from that of other paddocks, the changed paddocks may be treated as
outliers.

Fig. 3 also illustrates the sensitivity of different polarizations to
these changes. The increase in VH backscatter for all bare soil paddocks
was somewhat higher than that in HH and VV from DOY 267 to 270,
which can be explained by the different polarization sensitivities to soil
roughness. Irrigated paddocks showed significant backscatter increase
in all three polarizations. A feature space (e.g. the 2-dimension space
spanned by temporal difference of HV and VV) with larger sensitivity is
commonly more powerful in detecting the changed paddocks than one
with smaller sensitivity. For multi-temporal polarimetric data, thou-
sands of feature spaces are available and thus a feature selection al-
gorithm is needed to find the optimal feature space.

3. Synthetic data set

The cultivation practices observed during SMAPEx-5 cannot fully
represent all possible anomaly changes in real applications.
Accordingly, a synthetic SAR data set was generated with various soil
moisture, roughness and vegetation changes based on the SMAPEx-5
ground measurements for a comprehensive evaluation. The landcover
of the SMAPEx-5 focus area was selected as the base map for the syn-
thetic study with a total of 621 paddocks. In this section, the detail of
synthetic roughness, vegetation and soil moisture was introduced first,
followed by the method to build synthetic radar data and the evaluation
process over the generated synthetic data set.

3.1. Synthetic surface parameters

Eight soil moisture maps were generated with a time step of
2–3 days according to the eight sampling dates of SMAPEx-5.
Specifically, the day 1 average soil moisture value (m3/m3) of each
paddock was randomly generated from a uniform distribution of U
(0.25, 0.4). From this paddock average value, the soil moisture of each
pixel of the paddock was randomly generated from a normal distribu-
tion with a standard deviation of 0.05 (m3/m3) to account for intra
paddock variability. The dry down process observed during SMAPEx-5
(described in Section 2.1) was subsequently used to produce the fol-
lowing seven soil moisture maps.

After soil cultivation activities, both the observed s and cl changed
(Table 1). However, the changes of s and cl can be hardly independent
in real applications. Different empirical relationships between s and
effective cl have been observed for various radar configurations in
forward prediction, e.g., Baghdadi et al. (2004); Baghdadi et al. (2002),
with a fixed cl/s ratio of 10 suggested by Kim et al. (2012) for soil
moisture mapping at 3-km resolution for L-band data. Moreover, ad-
ditional parameters are required for soil surfaces with a periodical row
structure, as the effect of row structure and their temporal change on
backscatter is quite complex to model (Blaes and Defourny, 2008; Zribi
et al., 2002). Fortunately, this study only needed to determine the
presence/absence of roughness changes, meaning that it was un-
necessary to know the specific kind of change. As different types of
roughness changes, including the correlation function shape, row
structure, s and cl, can all result in similar changes in radar observa-
tions, equivalent changes of s can always be found for all potential
roughness changes. Accordingly, only s was simulated independently
with the exponential correlation function and a fixed cl of 10s. The s
was chose as the dependent variable due to its significantly higher

Table 1
Roughness and vegetation measurements of the paddocks with cultivation activities.

Paddock # Landcover VWC (kg/m2) Row azimuth Before cultivation After cultivation Cultivation activity DOY

s⁎ (cm) cl/s⁎ s⁎ (cm) cl/s⁎

1 Bare – 90 1.94(8.66) 6.82(2.44) 0.51(5.47) 5.32(20.7) 264
2–3 Bare – – – – – – 258
4–7 Bare – – – – – – 263
8 Bare – 10 – – 1.16(5.54) 8.24(3.65) 263
9 Bare – – 1.50 14.65 1.90 6.05 268
10 Bare – 90 2.12(6.30) 7.76(3.20) – – 269
11 Bare – – – – – – 268
12 Bare – – – – – – 268
13 Wheat – – – – – – 269
14 Wheat 3.72 10 1.01(2.94) 11.30(6.49) – – 269
15 Wheat 2.81 90 1.06(2.76) 7.24(4.98) – – 269
16 Wheat 1.17 – – – – – 269
17 Wheat 2.32 – – – – – 269
18 Wheat 2.82 90 1.54(2.83) 6.95(5.34) – – 269
19, 20 Wheat – – – – – – 269
21 Wheat 2.78 – 1.60 7.44 – – 269

–: not available.
⁎ Roughness along (perpendicular) to row structure for paddocks with periodic surface.

Fig. 2. Summary of PLIS (L-band), RADARSAT-2 (C-band) and COSMO SkyMed (X-band) data used in this study, showing acquisition date (day of year), frequency,
polarization and orbit.
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sensitivity on the radar backscatter (Ulaby et al., 2014). Similar to the
generation of soil moisture maps, the initial day 1 average s value (cm)
of each paddock was randomly generated from U(0.5, 4). Individual s
values within each paddock were then produced by randomly per-
turbing with a value selected from a normal distribution with a stan-
dard deviation of 0.3 cm. The gradual decreasing roughness over time
was approximated by multiplying through by a factor 0.98 on each day
to produce the second to eighth s maps.

As aforementioned, cultivation activities (e.g., harvest and irriga-
tion) over vegetated areas can introduce changes in both the vegetation
structure and biophysical parameters. In this study, a single parameter
(VWC) was selected to represent the vegetation layer considering the
complexity to include other parameters, with the two main vegetation
types of SMAPEx-5 (wheat and grass) were considered. For the purpose
of forward modeling, the vegetation layer was assumed as a random
layer of lossy cylinders with a dominant vertical structure. Other ve-
getation parameters were determined by their allometric relationships
with VWC and SMAPEx-5 ground measurements (Zhu et al., 2018a).
The initial average VWC value of each paddock was randomly gener-
ated from U (0.2, 4), with individual values within each paddock being
produced by imposing random perturbation according to a normal

distribution with a standard deviation of 0.5 kg/m2. Moreover, the
second to eighth VWC maps were generated by multiplying the pre-
vious VWC map by 1.05 to represent crop growth.

To simulate cultivation practices, random changes were introduced
into the s and VWC maps using a fixed probability of 10% for two
successive roughness and VWC maps in time. Once a paddock was se-
lected as having s or VWC changes, the average value of the paddock
was randomly determined and the value of each pixel in the paddock
re-generated according to the process outlined above. The input for
generating these maps is summarized in Table 2. It is worth noting that
the VWC of bare soil paddocks was set to 0 without allowing for
changes in time.

3.2. Construction of synthetic radar data

Based on the surface parameter maps, speckle-free backscattering
coefficient maps were produced using forward scattering models. For L-
band, the look-up table based on Numerical Maxwell Model of Three-
Dimensional simulation (NMM3D) (Huang and Tsang, 2012) was used
to predict the backscattering. The Distort Born Approximation (DBA;
Lang and Sighu, 1983) together with NMM3D was used for vegetated

Fig. 3. Anomaly surface changes at L-band (PLIS) multi-temporal SAR images. Panel (a) shows the changed paddocks observed between DOY 267 and 270, 2015 on a
false color composite Landsat 8 OLI image (RGB: near-infrared/red/green); panels (b), (c), and (d) are the backscatter difference maps in HH, HV and VV polar-
izations respectively between images acquired on DOY 267 and 270, with the changed paddocks also delineated, panels (e), (f) and (g) are respectively the time series
HH, HV and VV of several examples, which also include the average backscattering coefficient of the whole area labeled as “All”. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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areas. For C-band, the Oh model (Oh, 2004) and Oh + DBA model were
used for bare and vegetated areas. Only the bare soil (using the Oh
model) was included in the X-band data set because it is questionable to
use X-band for soil moisture retrieval under vegetation. Speckle noise
maps were produced using the chi-square distribution with 2N degrees
of freedom, where N is the number of independent looks (Bolter et al.,
1996). The speckle-free backscattering coefficient maps were then
multiplied pixel-wise with the generated speckle noise.

Fig. 4(a) shows the process of generating the time series σ0 in dB of a
given period 1 to q. For one grid with s or VWC changes at date k, two
sub-series σ0 were simulated taking the initial (s1 and VWC1) and
changed (s2 and VWC2) surface parameters as the input respectively.
The σ0 of wettest (mv= 0.43 m3/m3) and driest (mv= 0.03 m3/m3)
conditions with the initial s and VWC also generated, while an addi-
tional set of σ0 representing wettest and driest conditions were calcu-
lated for these with s or VWC changes (parts 5 and 6 in Fig. 4a).

3.3. Validation metrics

The records of simulated anomalies and cultivation practices

observed during SAMPEx-5 (Fig. 1) were used to produce reference
maps for validation of synthetic and real data results, respectively.
There are four possible outcomes in identifying a paddock as changed
or not, when comparing the detection results and the reference maps:
true positive (TP), true negative (TN), false positive (FP) and false ne-
gative (FN). Based on these, accuracy rate (AR), false alarm rate (FAR),
and F score (Olson and Delen, 2008) were calculated:

=
+

AR TP
TP FP

, (1)

=
+

FAR FN
TP FN

, (2)

=
+ +

F TP
TP FP FN

2
2

, (3)

The AR (also known as precision) and FAR reflect the missed alarms
and the false alarms of change detection results, respectively, while the
F score is a joint measure that penalizes both missed alarms and false
alarms. For soil moisture retrieval from multi-temporal SAR data, the
missed alarms are the source of error, but the FAR is also important
because it controls the retrieval rate which is defined as the percentage
of areas that can be used in soil moisture retrieval. As an example, with
all paddocks identified as changed (AR= 1; FAR~ 1) no errors will be
introduced because the entire image cannot be used in soil moisture
retrieval.

In addition, the multi-temporal soil moisture retrieval algorithm
proposed by Wagner et al. (1999a) was used to show the effect of s and
VWC changes on retrieval before and after the change detection. Spe-
cifically, the Wetness Index (WI: 0 to 100%) for a grid is defined as
(Wagner et al., 1999a):

=WI ,dry

wet dry

0 0

0 0 (4)

where σ0, σdry0, and σwet0 are the current backscatter values at HH po-
larization of a target grid, and that of the wettest and driest conditions,
respectively. Fig. 4(b) shows the concept of the validation process using
the WI. The time series σ0 was first separated into two sub-series at the
detected change date k′ (parts 7 and 8 in Fig. 4b). Three WIs can be
calculated: i) one without removing the effect of roughness and VWC
changes (WIu); ii) one with all changes being removed using the ground
truth (WIgt); and iii) one with changes removed by the proposed
method (WIc). The root mean square error (RMSE) of WIc and WIu were
then calculated taking WIgt as the truth. Accordingly, the RMSE of WIc
and WIu can be treated as the initial and residual error caused by the s
and VWC changes before and after change detection, respectively.

4. Methodology

The proposed change detection method consists of two components
(Fig. 5): (i) feature selection and extraction at the paddock scale, and
(ii) determination of the change maps. The first component intends to
extract the optimal features of paddocks for effectively detecting the
anomaly surface changes. The second component is a two-step proce-
dure to identify the changed paddocks, where multiple over-detected
change maps for the period of interest are first generated using a simple

Table 2
The input for generating time series maps of surface parameters. U (A, B) denotes a uniform distribution ranging from A to B.

Parameter Soil moisture (m3/m3) RMS height (cm) VWC (kg/m2)

Distribution for initial mean value U (0.25, 0.4) U (0.5, 4) U (0.2, 4)
Intra-paddock standard deviation 0.5 0.3 0.5
Gradually changing rate 1 − e(−I/2)⁎ 0.98 1.05
Probability of anomaly change 0 10% 10% or 0
Anomaly change amplitude (%) 0 U (10, 70) U (10, 70)

⁎ Coincident with SMAPEx-5, I is the map time index starting from 1.

Fig. 4. Flowchart of synthetic radar data construction (a) and the validation
process over the synthetic radar data using Wagner's method (b). The s and
VWC are roughness RMS height and vegetation water content respectively, with
the superscript 1 and 2 being the initial and changed states. mv1,q denotes time
series soil moisture from the first to qth dates.
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density-based method and then merged using a “voting” to remove the
false changed paddocks.

4.1. Feature selection and extraction at the paddock scale

As previously addressed, anomaly surface change detection is more
suitable to be carried out at the paddock scale within the optimal fea-
ture space. Accordingly, a Landsat 8 OLI image was used to provide the
paddock boundaries. Several difference/ratio images were then ex-
tracted using pixel-wise algebraic operations to provide candidates for
an optimal feature space, which were then further determined using a
genetic algorithm (GA) based feature selection. Following the extracted
boundaries and corresponding difference/ratio values calculation, the
mean vector of each paddock was calculated over the optimal space.
These vectors were then normalized to be between 0 and 1 along each
dimension as the input to the change detection algorithm. The process
is detailed as follows:

A. Paddock extraction. The boundaries of paddocks are extracted
using a range of image segmentation algorithm; several available
algorithms were comprehensively evaluated in Zhang et al. (2015).
In this study, the multi-resolution segmentation algorithm (Baatz,
2000) embedded in the commercial software eCognition Developer
8 was used, with the scale and shape parameters being 10 and 0.5,
respectively, considering the size and shape of paddocks in the study
area.

B. Calculation of backscatter difference/ratio images. The candi-
date difference/ratio images are listed in Table 3. The difference and
ratio images of two temporally adjacent acquisitions t and t− 1 in
dB can be calculated as:

=f x y f x y f x y( , ) ( , ) ( , ),pq
t

pq
t1 1

(5)

=f x y f x y f x y( , ) ( , )/ ( , ),pq
t

pq
t2 1

(6)

where p and q refer to H and V polarization, and x and y are the row and
column of a pixel in the image. The number of possible features for fully
polarized data is 18, resulting in a large number of available feature
combinations (218 = 262,144) for subsequent refinement using the
feature selection algorithm below.

C. Optimal feature space selection. A range of feature selection al-
gorithms are available (see Guyon and Elisseeff (2003) for an in-
troduction and review). Among these, genetic algorithms (GA) are a
well-known general adaptive optimization method that can effi-
ciently process large search spaces with a low risk of reaching a local
optimum (Guyon and Elisseeff, 2003). Hence, a GA was employed as
the search algorithm in this study to find the optimal feature space.

A GA is a metaheuristic searching algorithm inspired by the process
of natural selection. The first step of a GA is chromosome design and
population initialization. For fully polarized data, the chromosome is an
18-bit binary value, corresponding to the 18 available features listed in
Table 3. In the population initialization, 20 chromosomes were ran-
domly generated with several bits of each chromosome being 1, de-
noting the initial selected features. These chromosomes were then
adaptively optimized using three genetic operations, i.e. selection,
crossover, and mutation. The selection operation was used to pick good
chromosomes from the current population according to the fitness
function defined in this study as:

=fitness e e2(1 ) ,Ns Na/ (7)

Fig. 5. Flowchart of the proposed change detection method.

Table 3
Candidature feature index for SAR data acquired at time t and t− 1.

Family (#) Candidature features

Difference (6) HHt − HHt+1, HHt− HVt+1, HHt− VVt+1, HVt − HVt+1, HVt− VVt+1, VVt− VVt+1

Ratio (6) HHt/HHt+1, HHt/HVt+1, HHt/VVt+1, HVt/HVt+1, HVt/VVt+1, VVt/VVt+1

Second order features (6) HVt/VVt− HVt+1/VVt+1, HVt/HHt-HVt+1/HHt+1, HHt/VVt− HHt+1/VVt+1, (HVt/VVt)/(HVt+1/VVt+1), (HVt/HHt)/(HVt+1/HHt+1),
(HHt/VVt)/(HHt+1/VVt+1)

L. Zhu, et al. Remote Sensing of Environment 225 (2019) 93–106

99



=
+

+ +µ µ
C C

µ µ C C C C1
8

( )
2

( ) 1
2

ln 1
2

| |/ | || | ,i j
T i j

i j i j i j

1

(8)

where μi and μj are the mean vector of class i and j (change or un-
changed), respectively; Ci and Cj are the covariance matrix of class i and
j, respectively; Ns and Na denote the number of selected features and
number of all available features, respectively. The first term of the fit-
ness function, i.e. e2(1 ) , is known as the Jeffreys-Matusita (J-M)
distance (0 − 2 ) which is a commonly used metric of interclass se-
parability (Bruzzone et al., 1995). Two classes are partly to fully se-
parable if the J-M distance is larger than 1. The rest of the fitness
function is used to limit the number of selected features considering the
computational efficiency in the change detection.

The crossover operator refers to the exchange of several bits be-
tween two chromosomes, and the mutation operator is used to improve
the genetic diversity by randomly modifying some part of a chromo-
some. Both crossover and exchange can help avoid local optima by
exploring new regions of search space. The optimization process is
terminated when the number of iterations (also known as generations)
reaches a defined value. In this study, the maximum generation, po-
pulation size, crossover rate, and mutation rate were 100, 20, 0.1, and
0.01 respectively.

4.2. Determination of the change maps

After the previous step, each paddock corresponds to a feature
vector in the selected optimal feature space and a set of thresholds or a
hyper-plane is required to separate the changed paddocks from those
that are unchanged. A number of methods can be used to achieve an
accurate hyper-plane with some assumptions and/or iterative optimi-
zation (Bazi et al., 2005; Gong et al., 2012). Despite the satisfactory
performance in specific applications, the main drawback of these
methods is the complexity to be a pre-processing stage of multi-tem-
poral soil moisture retrieval. A simple strategy inspired by the ensemble
machine learning is used here. In the framework of ensemble leaning
(Zhang and Ma, 2012), the combination of multiple poor to moderate
results from different leaners is expected to result in an accurate result.
Similarly, the combination of multiple over-detected change maps for
the period of interest derived from different SAR pairs are also expected
to have a satisfactory result. Generating over-detected change maps is
easier than an accurate one.

Given a time series of SAR images O= {O1, …, Ok, …, Ot}, the
anomaly surface changes that occurred between the acquisitions t− 1
and t are recorded by t− 1 SAR pairs Ot/Ot−1, …, Ot/Ok, …, Ot/O1

(1 < k < t− 1). Based on these SAR pairs, t− 1 over detected change
maps C= {Ct,t−1, …, Ct,k …, Ct,1} (1 < k < t− 1) can be generated.
Obviously, a change map Ct,k includes not only the changed paddocks
for the target period (t− 1 and t) but also these for the period of t− 1
to k. The latter can be removed by simply subtracting the change map
Ct−1,k generated from Ot−1/Ok from the Ct,k. Accordingly, t− 1 change
maps for the target period are generated C= {Ct,t−1, …, Ct,k− Ct−1,k,
…, Ct,1 − Ct−1,1} (1 < k < t− 1). These poor to moderate change
maps were finally merged to get a more accurate one through:

= < <C C C N k t( ) 1, (1 ),
k

t k t k k, 1,
(9)

where Nk is the number of k. A straightforward explanation of Eq. (9) is
as follows: multiple change maps for the period t and t− 1 can be
treated as independent “voters” which are more likely to vote the real
changed paddocks. The maximum number of votes that one paddock
can get is Nk, with the real changed paddocks expected to receive near
Nk votes, which is significantly larger than that of falsely identified
paddocks. Accordingly, a threshold Nk− 1 can help remove most of the
false alarms. An example of how multiple change detection results are
merged is provided in Fig. 6 using the time series L-band data.

Eq. (5) requires multiple over-detected change maps which are
generated using a simple clustering algorithm, i.e. Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996).
DBSCAN is capable of dealing with a large dataset and discovering
clusters with arbitrary shape and noise without predetermination of a
cluster number. Since the DBSCAN is only used to identify the noise
which is the changed paddocks in this study, only a brief introduction
relating to the noise is included; please refer to Ester et al. (1996) for
detail.

In DBSCAN (Ester et al., 1996), a point pi of a dataset P belongs to
one of the following three types: core point, border point, and noise.
The definitions of these types are based on the conception of local
density D (pi) = Cardinality (NEps (pi)), where NEps (pi) is the number of
neighbour points of pi within a given radius (Eps) defined as
NEps(pi) = {pj|∀j,distance(pi,pj) < Eps}. In other words, this refers to
the number of points within a radius Eps. A core point pc refers to a
point containing at least a user-defined minimum number of other
points (MinPts) within Eps, i.e. D (pc) ≥MinPts. A noise point pn refers to
one that does not contain core points in their neighbours and D
(pn) < MinPts.

The selection of Eps and MinPts is key to the success of DBSCAN
(Khan et al., 2014). For cases with prior-knowledge of the percentage of
noise, the Eps can be determined using the MinPts-dist graph (Ester
et al., 1996). In this study, the DBSCAN was not used to generate ac-
curate change maps, but one that includes all potential changed pad-
docks. A relatively large percentage of noise (15%) was set for over-
detecting paddocks, which will be refined in the ensemble detection.

5. Results

5.1. Experiment design

Three experiments were designed to evaluate the performance of
the proposed method. The parameter Nk was set to 3, indicating that
four SAR images in the time series were used to produce three over-
detected change maps in the single detection step, with these merged in
the ensemble detection. The determination of such a value is due to the
availably of multi-temporal images in a short time span for a reduced
effect of gradual roughness and vegetation changes (e.g., 24 days for 4
Sentinel-1 A/B observations). The detail of each experiment is in-
troduced below with the input data sets described in Table 4.

A. The first experiment was designed to select the optimal feature
spaces for roughness and/or VWC changes based on two synthetic
data sets (DS-1 and DS-2). Specifically, optimal feature spaces for L-,
C-, and X-band and two polarization modes i.e., Quad
(HH + HV + VH + VV) and Dual (VH + VV), were selected. These
optimal spaces are therefore independent from the later change
detection over the real data set.

B. The proposed change detection method was comprehensively eval-
uated in the second experiment using the optimal spaces selected in
Experiment A. The evaluation was first carried out on DS-1 and DS-2
to show the performance at different frequencies and incidence
angles, followed by an investigation on the effect of noise and
change amplitude using DS-3.

C. The time series of PLIS, RADARSAT-2 and COSMO SkyMed images
(Fig. 2) were used in the last experiment to show the performance
on a real data set.

All synthetic data were generated ten times with different random
presence/absence of roughness and VWC changes and thus ten values
are available for each validation metric. The mean and standard de-
viation of these values was reported below to show the average per-
formance and stability of the proposed method. For simplicity, F score,
AR, and FAR are used to denote the average F score, AR, and FAR of the
10 trials hereafter.
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5.2. Optimal feature space

Table 5 introduces the optimal feature space identified for different
radar configurations (frequency and polarization). In general, the J-M
distance for all cases was larger than 1.28 showing a satisfactory se-
parability between changed and unchanged paddocks in the selected
feature space. The number of selected features was relatively small
(3–4) compared to the 18 available features for fully polarized data.
More specifically, the HVt/VVt− HVt+1/VVt+1 combination was se-
lected by all radar configurations, followed by the VVt− VVt+1,
HVt − HVt+1, and HVt/HVt+1, which were selected in 5, 3 and 2 cases,
respectively. Since VVt − VVt+1, and VVt/VVt+1 are highly correlated,
the features based only on time series VV were selected by all config-
urations. Similarly, time series of HV polarization were selected in 5
cases, including either HVt− HVt+1 or HVt/HVt+1. These results can be
explained by the different sensitivities of features to surface changes.
For example, the cross-polarized ratio (HV/VV) is very sensitive to the
change of roughness, especially for roughness changes at small values
(ks < 2 where k is the wavenumber; Oh, 2004), while the HV polar-
ization is sensitive to both VWC and roughness changes (Ulaby et al.,
2014). The VV polarization has larger attenuation than HH over ve-
getation with a dominant vertical structure (e.g., wheat) and thus VWC
changes can result in larger changes in VV. Despite the great similarity,
slight changes in feature constitution were observed among different
radar configurations, which may result from the existence of multiple
solutions with similar fitness values.

L-band achieved the largest J-M distance in both Quad and Dual
polarized data, followed by C- and X-band. However, the difference was
limited with the largest difference (0.16) observed between L-band
Quad and X-band Dual. Quad data achieved a slightly larger J-M dis-
tance than Dual data for L- and X-band, with the aid of an additional

feature related to the co-polarized ratio (HH/VV); i.e. HHt/VVt+1 for X-
band and (HHt/VVt)/(HHt+1/VVt+1) for L-band. The effect of HH/VV
here is unclear, because i) the elevation angle of vegetation was

Fig. 6. An example showing the process of
generating the change map for the period of
t and t− 1 using an L-band series. White
paddocks are those identified as changed.
The label C refers to over-detected maps
with the subscripts denoting the periods.
Three over-detected maps for the periods of
t and t− 1 were generated first and then
merged to remove the false alarms.

Table 4
Synthetic data sets used in this study. DS denotes dataset.

Frequency (GHz) Incidence angle
(°)

Look # Types of anomaly
changes

DS1 1.26 & 5.41 20, 30, 40, 50 1 VWC & roughness
DS2 9.3 20, 30, 40, 50 1 Roughness
DS3 1.26 30 1:2:11 VWC & roughness

Table 5
Selected (those with a ×) optimal feature space and the corresponding J-M
distance for different radar configurations based on synthetic SAR data sets
with various surface changes, where the grey grids denote the unavailable
features. Q and D denote Quad and Dual (HV + VV) polarization, respectively.

Feature X-band C-band L-band

Q D Q D Q D

HHt − HHt+1

HHt − HVt+1

HHt − VVt+1

HVt − HVt+1 × × ×

HVt − VVt+1 ×

VVt − VVt+1 × × × × ×

HHt/HHt+1

HHt/HVt+1

HHt/VVt+1 ×

HVt/HVt+1 × ×

HVt/VVt+1

VVt/VVt+1 ×

HVt/VVt − HVt+1/VVt+1 × × × × × ×

(HVt/VVt)/(HVt+1/VVt+1)

HVt/HHt − HVt+1/HHt+1

(HVt/HHt)/(HVt+1/HHt+1)

Ht/VVt − HHt+1/VVt+1

(HHt/VVt)/(HHt+1/VVt+1) ×

J-M distance 1.32 1.28 1.35 1.35 1.39 1.37
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assumed to follow a fixed distribution and thus VWC changes cannot
introduce significant changes in HH/VV; and ii) HH/VV is relatively
insensitive to roughness changes, changing from 0.6 dB to 3.5 dB when
σ changes from 0.3 to 4.8 cm at C-band (Oh, 2004). Accordingly, a
uniform feature space including the HVt/VVt− HVt+1/VVt+1, HVt/
HVt+1 and VVt− VVt+1 was sufficient for all radar configurations listed
in Table 4. The J-M distances in this space were around 1.37, 1.34 and
1.27 for L-, C- and X-band, respectively.

This does not mean however that dual polarized data are sufficient
for all future applications. For example, HH may be required for ve-
getated areas with more complex structures (e.g., soybean). In addition,
the effect of vegetation structure and its interaction with VWC changes
were not considered, because of the simplistic vegetation scattering
representation in the DBA (Lang and Sighu, 1983). To address this, the
Numerical Maxwell Model of three-dimensional simulations (Tsang
et al., 2017) can be promising, as this model can fully simulate the
scattering of vegetation in detail. The polarimetric parameters calcu-
lated from fully polarized data (Cloude and Pottier, 1996) are expected
to be more sensitive to the vegetation structure changes than a simple
polarization difference/ratio. Finally, the J-M distance is only part of
the cost function used in the feature selection, with a more complex
feature space potentially providing a better performance for full po-
larized data at the expense of a drastic increase in computational load.

5.3. Evaluation using synthetic data sets

Fig. 7 shows the performance of the proposed method on single-look

synthetic data with different frequencies and incidence angles. In gen-
eral, moderate performance was achieved in all cases with the F score,
AR and FAR ranging from 0.81 to 0.87, 0.76 to 0.82 and 0.09 to 0.15,
respectively. The proposed method performed best at L-band, followed
by C- and X-bands but only with a slight F score difference (< 0.06).
These results are coincident with the difference of J-M distance listed in
Table 5. The standard deviation of F score, AR and FAR were all < 0.02
showing a good stability of the proposed method. All three metrics
demonstrated no clear angular pattern although the same roughness
and/or VWC change resulted in quite different backscatter changes at
different incidence angles. This can be partly explained by the multiple
dependence of detection accuracy on the sensitivity of radar config-
uration, noise level and spatial variation of moisture changes. For time
series with slight roughness and vegetation changes, noise could be the
dominant factor resulting in a similar detection accuracy at different
incidence angles regardless of the difference in sensitivity. The binary
process (absence/presence) in change detection could be another
reason. For those paddocks with large roughness and vegetation
changes, the backscatter changes at low sensitivity radar configurations
(e.g., small incidence angles) could be large enough to be identified.

Despite the moderate performance in view of accuracy metrics
(Fig. 7a–c), the proposed method can greatly remove the error caused
by roughness and VWC changes in multi-temporal soil moisture re-
trieval as depicted in Fig. 7(d). About 68.3% (L-band), 74.5% (C-band)
and 74.8% (X-band) of the initial RMSE was removed after change
detection. The residual RMSE was < 8%, 7% and 3% for L-, C-, and X-
band respectively. This difference is mainly caused by the different

Fig. 7. Performance of the proposed method on single-look synthetic data sets. (a)–(d) are the AR, FAR, F and RMSE of wetness index at L-, C- and X-bands with
various incidence angles, respectively. The error bars denote the standard deviation of metrics.
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amount of changed paddocks. At X-band, 10% of bare soil paddocks had
random roughness changes, while additional VWC changes in 10% of
the vegetated paddocks were included at L- and C-bands. Significant
angular dependence of RMSE was observed at L- and C-bands. This is
mainly caused by the heavy dependence of backscattering coefficient
on incidence angle and frequency over vegetated areas. The same VWC
change at larger incidence angles and/or higher frequencies resulted in
larger backscattering coefficient changes and consequently larger error
in the multi-temporal retrieval. In contrast, the same roughness change
at different angles resulted in similar backscattering coefficient changes
and thus no clear angular pattern being observed in the results of X-
band. For instance, a s change from 0.3 cm to 3 cm results in a HH
difference of 8.1 dB at an incidence angle of 20° according to the Oh
model, which is 10.0 dB at 50° given a soil moisture value of 0.3 m3/m3.

The relationship between the performance and the number of in-
dependent looks for L-band is presented in Fig. 8, where a larger
number of looks indicates a lower noise level. As expected, AR and F
gradually increased as noise decreased and reached their highest values
when the number of looks was larger than 7, while the opposite was
found for FAR. This is consistent with the process of noise reduction
using the multi-look operation. The main part of the noise was removed
changing the number of looks from 1 to 7, with further multi-looking
contributing little to the result. After removing the major part of the
noise, a satisfactory performance was achieved with an F score, AR and
FAR of 0.90, 0.85, and 0.07, respectively. However, the improvement in
the residual RMSE of wetness index was negligible (~1%), as depicted
in Fig. 8(b). One explanation is that the improvement in AR mainly
comes from additional identification instances of small roughness and
VWC changes whose effect on radar observations is close to the noise
level. Such small roughness and VWC changes could only have a limited
effect on multi-temporal soil moisture retrieval, thus with negligible
improvement.

A further investigation on the relationship between detection ac-
curacy and surface change amplitude in percentage for single-look L-
band data is presented in Fig. 9. The proposed pre-processing method
had a relatively poor performance in identifying small roughness and
VWC changes with an AR of 0.62 for a 10% change, but fortunately the
effect of these small changes on multi-temporal soil moisture retrieval is
also small. The residual RMSE in wetness index after change detection
is only 2.46%. An important implication based on this is that the gra-
dual (natural) roughness and VWC changes should not have a sig-
nificant effect on soil moisture retrieval. When the amplitude of
roughness and VWC change increased from 10% to 70%, AR and F
increased from 0.62 to 0.90 and 0.68 to 0.92 respectively, with a sharp
FAR decrease of 0.19. However, the residual RMSE in soil wetness first

slightly increased from 2.46% to 7.32% and then decreased to 4.01%.
This can be explained by the different effects of surface change am-
plitude on AR and RMSE. The RMSE of the wetness index relates to the
number of missed alarms and the absolute error caused by a single
missed alarm. Paddocks with larger change amplitudes are easier to be
identified, resulting in a reduced number of missed alarms and thus a
positive contribution to RMSE. But failure identification of paddocks
with larger change amplitudes can introduce larger errors in moisture
retrieval than those with smaller amplitudes, being a negative effect on
RMSE. For change amplitudes < 40%, the negative effect is larger than
the positive, which was reversed for larger surface changes.

5.4. Evaluation using real observational data set

The sudden surface change detection results over time series of PLIS,
RADARSAT-2 and COSMO SkyMed acquisitions are presented in
Fig. 10, with the dashed lines showing the start and end time of the
period of interest for each change map. The detection agreement is
shown in light grey for the unchanged paddocks and in blue for the
changed paddocks. The false alarms and missed alarms are depicted in
dark grey and green, respectively. In general, the proposed method
achieved satisfactory results for L- and C-band data. Only one changed
paddock was missed for the L-band data with a total of 9 false alarms.
Despite the relatively high FAR (0.3), only one paddock was erro-
neously identified as changed twice in this period (the red circle in
Fig. 10). These false alarms only have a negative influence on soil
moisture retrieval methods that need a long time series of SAR data
(e.g., Wagner et al., 1999a). Taking the paddock in the red circle in
Fig. 10 as an example, it was falsely detected as changed between DOY
260–262 and DOY 265–267. Consequently, the relevant time series of
the L-band observations should be separated into three sub-series, i.e.
DOY 255–260, DOY 262–265, and DOY 267-end. Soil moisture retrieval
algorithms can subsequently be applied on these respective sub-series.

In the detection results of C-band, acceptable results (AR 0.91; FAR
0.09) were achieved with two false and two missed alarms. This de-
monstrates the robustness of the proposed method in dealing with time
series images acquired by different observation modes, with the assis-
tance of a simple incidence angle normalization process. However, the
detection results for X-band data were much poorer. A number of
changed paddocks for DOY 263–269 were not identified. This is mainly
caused by the feature space used in X-band; the COSMO SkyMed data
only has HH polarization which is not sufficient to detect all changed
paddocks.

Fig. 8. Impact of noise on performance using L-band synthetic data. Panel (a) shows the average AR, FAR, and F versus the number of looks; panel (b) shows the
RMSE of wetness index versus the number of looks. The error bars denote the standard deviation of metrics.

L. Zhu, et al. Remote Sensing of Environment 225 (2019) 93–106

103



6. Discussion

The objective of the proposed pre-processing method is to identify
abrupt roughness and vegetation changes caused by cultivation activ-
ities, to ensure that the soil moisture variation is the only source of
backscattering variation for the time period being processed for soil
moisture. However, a few other factors may also result in back-
scattering variation in time (Fig. 11). Variation of the SAR system can
also introduce significant changes in SAR observations (Ulaby et al.,
2014), creating a problem in the change detection-type methods
(Wagner et al., 1999a), while also providing a great opportunity for
methods using the characteristic of multi-configuration, e.g., van der
Velde et al. (2012). Relative geometric and calibration errors are tightly
related to a specific SAR system so data acquired from the same ob-
servation geometry commonly has great stability, while combining
images with different acquisition modes and/or incidence angles may
introduce large uncertainties. A simple strategy to avoid these changes
is to identify the changes using the same source of SAR data first and
then merge the backscatter change maps from different SAR sources
using simple map algebraic operation. For soil moisture retrieval from
time series multi-SAR data, a robust scattering model is required to
represent the different scattering behaviors in various radar config-
urations.

The proposed method only achieved a moderate detection accuracy
with the AR and FAR ranging from 0.75 to 0.85 and 0.08 to 0.15 for
single-look data. These are lower than the results of other methods in
identifying the change of landcover types (Marin et al., 2015; Pantze
et al., 2014), flooded area (Brisco et al., 2013), ship (Wei et al., 2014)
and oil spills (Konik and Bradtke, 2016), which commonly have an AR
and FAR of better than 0.9 and 0.1 respectively. However, detecting soil
roughness and VWC changes is more challenging, as the amplitudes of
these changes are much smaller than that of landcover type change,
presence/absence of a ship etc. Despite the relatively low accuracy,
satisfactory results were achieved in view of the residual error in soil
moisture retrieval. Notably, the method was only evaluated based on
the SMAPEx-5 scenario (a smooth dry down period), with sudden
moisture changes due to irrigation and rainfall treated as anomaly
changes. In addition, the proposed method can work in an unsupervised
and fast way without any prior assumptions about the data distribution.
DBSCAN which was originally applied to discover cluster structures
(Ester et al., 1996) was used here to over-detect noise (changed pad-
docks) by simply setting an overestimated noise percentage.

To serve as a pre-processing procedure of operational global soil
moisture retrieval, the proposed method should be further simplified,
with the step of paddock extraction using image segmentation being

Fig. 9. Impact of roughness and VWC change amplitude on performance using L-band synthetic data. Panel (a) shows the average AR, FAR, and F versus change
amplitude; panel (b) shows the RMSE of wetness index versus change amplitude. The error bars denote the standard deviation of metrics.

Fig. 10. Change detection results versus ground truth using real SAR data
collected during the SMAPEx-5 study period. The dashed lines show the start
and end time of the period of interest for each change map.
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inconvenient for real-time applications. But this step can be carried out
independently and it is unnecessary to extract the paddocks every time
before detecting the changed paddocks. Alternatively, land use data or
patches of a landcover map can be roughly treated as paddocks in
global application. Several global land cover maps (e.g., Chen et al.,
2015; Gong et al., 2013) with a spatial resolution of 30 m are available
for this. The selection of optimal feature space can also be carried out
independently based on more observations of surface cultivation.
Otherwise, the feature spaces selected in this study can be used directly
because the selection of these feature spaces is independent of the
specific study area. Finally, the DBSCAN can be directly replaced by its
parallel version (Xu et al., 2002) to deal with the huge global data set.

7. Conclusion

This study introduced an unsupervised method to detect anomaly
surface changes, serving as a pre-procedure of soil moisture retrieval
from time series SAR images. Briefly, time series data are separated into
multiple subseries according to the change detection results. For multi-
temporal soil moisture retrieval methods without a calibration process,
e.g., Balenzano et al. (2011), Kim et al. (2012), Ouellette et al. (2017)
and Zhu et al. (2018a), soil moisture retrieval can be carried out on
each sub-series independently. However, for those requiring a calibra-
tion or multi-temporal vegetation correction, e.g., the Wagner et al.
(1999a) and Pierdicca et al. (2010), the proposed method could provide
an alarm for potential uncertainty caused by roughness and vegetation
changes. This method includes two main steps; i) generating multiple
over-detected surface change maps in the selected optimal feature
space, i.e. the space spanned by the temporal ratio of VH and the
temporal difference of VV and VH/VV, and ii) combining multiple
change maps to get a robust change map. Evaluation on synthetic data
sets demonstrated that the proposed approach can effectively eliminate
the major part of error in multi-temporal soil moisture caused by
roughness and VWC changes, although only a moderate AR (0.75–0.85)
and FAR (0.08–0.15) was achieved for single look data. Experiments on
real L- and C-band data also confirmed the effectiveness of the method
showing an accurate identification of changed paddocks (> 0.9) and a
low false-alarm rate (< 0.1).
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